Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 243 Accesses

Abstract

This chapter introduces the role of hydrogen in the current energy system transition: from fossil-based to renewable and low-carbon emission sources. Although solar and wind energy are abundant renewable sources, the intermittence of electricity generation remains a challenge for security of supply and causes instabilities in the electricity grid. The integration of green hydrogen produced by water electrolysis into a smart energy system –or a smart grid–, is considered a promising solution to overcome the handicaps of the renewable electricity production and certain hard-to-decarbonize industrial sectors. The principle of water electrolysis along with the different electrolyzer technologies is also presented in the first section. In the second section, a numerical model of an industrial alkaline water electrolyzer plant is described. The different unit operators that comprise the system to produce purified hydrogen are individually introduced. The chapter concludes by showing the capabilities of an off-grid water electrolyzer system, which consists of a battery energy system and solar PV and wind power installations. Simulation of the plant demonstrates, as a proof of concept, the feasibility of the system for future integration into a smart energy system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

AWE:

Alkaline water electrolyzer

BESS:

Battery energy storage system

DC:

Direct current

FLHs:

Full load hours

ODE:

Ordinary differential equation

PEM:

Proton exchange membrane

PEMWE:

PEM water electrolyzer

PID:

Proportional integral derivative

SEC:

Specific energy consumption

\(\alpha \):

U–I curve model parameter

\(\beta \):

U–I curve model parameter

\(\epsilon \):

Emissivity

\(\eta \):

Efficiency

\(\rho \):

Density

\(\sigma \):

Stefan-Boltzmann constant

A:

Cross-sectional area

C:

Thermal capacitance

D:

Diameter

F:

Faraday constant

h:

Average heat transfer coefficient

I:

Current

i:

Current density

k:

Thermal conductivity

L:

Length

M:

Molarity

\(\dot{m}\):

Mass flow rate

N:

Total number

\(\dot{n}\):

Molar flow rate

P:

Pressure

\(\dot{Q}\):

Power loss

R:

Resistance

r:

Reaction rate

s:

Tafel slope model parameter

T:

Temperature

U:

Voltage

V:

Volume

z:

Number of moles of electrons transferred in the reaction

\(\text {Mm}\):

Molar mass

\(\text {Nu}\):

Nusselt number

act:

Activation

amb:

ambient

an:

Anode

c:

Cell

cat:

Cathode

cd:

cold

cn:

consumption

cnv:

convection

con:

Concentration

ele:

Electrolyte

F:

Faraday

h:

hot

imp:

impurities

i:

Inlet

j:

Outlet

liq:

liquid

loss:

loss

m:

make-up feed

ohm:

Ohmic

pd:

production

rad:

radiation

rev:

Reversible

rev,0:

Standard equilibrium

s:

stack

sep:

separation vessel

shunt:

shunt current

tn:

thermoneutral

v:

Vapor

w:

Water

References

  1. IEA (2019) World energy outlook 2019. Technical report Paris: IEA, p 810

    Google Scholar 

  2. Bogdanov D et al (2021) Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227:120467. issn: 0360-5442. https://doi.org/10.1016/j.energy.2021.120467. (July 2021)

  3. Eyring V et al (2021) Human influence on the climate system. In: Masson-Delmontte V et al (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Bridge University Press, Cambridge, pp 423–552

    Google Scholar 

  4. Erker S, Stangl R, Stoeglehner G (2017) Resilience in the light of energy crises - part I: a framework to conceptualise regional energy resilience. J Clean Prod 164:420–433. issn: 0959-6526. https://doi.org/10.1016/j.jclepro.2017.06.163. (Oct 2017)

  5. IEA (2021) World energy outlook 2021. Technical report Paris: IEA, p 386

    Google Scholar 

  6. IRENA (2021) Renewable power generation costs in 2021. Technical report 2021

    Google Scholar 

  7. IRENA (2022) Renewable capacity highlights 2022. Technical report IRENA, p 3. (Apr 2022)

    Google Scholar 

  8. Vartiainen E et al (2021) True cost of solar hydrogen. In: Solar RRL, vol 6.5, p 2100487. (Sept 2021). issn: 2367-198X, 2367-198X. https://doi.org/10.1002/solr.202100487

  9. Krüger A et al (2020) Integration of water electrolysis for fossil-free steel production. Int J Hydrog Energy 45(55):29966–29977. (Nov 2020). issn: 0360-3199.https://doi.org/10.1016/j.ijhydene.2020.08.116

  10. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27(6):611–619. (June 2002). issn: 03603199. https://doi.org/10.1016/S0360-3199(01)00177-X

  11. Buttler A, Spliethoff H (2018) Current status of water electrolysis for energy storage, grid balancing and sector coupling via powerto-gas and power-to-liquids: a review. Renew Sustain Energy Rev 82:2440–2454. (Feb 2018). issn: 13640321. https://doi.org/10.1016/j.rser.2017.09.003

  12. IEA (2015) Technology roadmap-hydrogen and fuel cells. Technical report. IEA, Paris, p 81

    Google Scholar 

  13. Jupudi RS, Zappi G, Bourgeois R (2007) Prediction of shunt currents in a bipolar electrolyzer stack by difference calculus. J Appl Electrochem 37(8):921–931. (June 2007). issn:0021-891X, 1572-8838. https://doi.org/10.1007/s10800-007-9330-4

  14. Schalenbach M et al (2013) Pressurized PEM water electrolysis: efficiency and gas crossover. Int J Hydrog Energy 38(35):14921–14933. (Nov 2013). issn: 0360-3199. https://doi.org/10.1016/j.ijhydene.2013.09.013

  15. Olivier P, Bourasseau C, Bouamama PB (2017) Low-temperature electrolysis system modelling: a review. Renew Sustain Energy Rev 78:280–300. (Oct. 2017). issn: 13640321. https://doi.org/10.1016/j.rser.2017.03.099

  16. Ruuskanen V et al (2020) Power quality estimation of water electrolyzers based on current and voltage measurements. J Power Sources 450:227603. (Feb 2020). issn: 0378-7753. https://doi.org/10.1016/j.jpowsour.2019.227603

  17. Trasatti S (1999) Water electrolysis: who first?. J Electroanal Chem 476(1):90–91. (Oct 1999). issn: 15726657. https://doi.org/10.1016/S0022-0728(99)00364-2

  18. Smolinka T et al (2021) Chapter 4: the history of water electrolysis from its beginnings to the present. In: Electrochemical power sources: fundamentals, systems, and applications: hydrogen production by water electrolysis. Elsevier, San Diego, The Netherlands, pp 83–163. isbn: 978- 0-12-819425-6

    Google Scholar 

  19. Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100(2):410–426. (Feb 2012). issn: 0018-9219. https://doi.org/10.1109/JPROC.2011.2156750

  20. Jarvinen L (2020) Design of a PEM electrolyzer test station for experimentation on power quality induced efficiency loss and cell degradation. MA thesis. Lappeenranta, Finland: Lappeenranta-LahtiUniversity of Technology LUT, 2020

    Google Scholar 

  21. Carmo M et al (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38(12):4901–4934. (Apr 2013). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2013.01.151

  22. Leroy R (1983) Industrial water electrolysis: present and future. Int J Hydrogen Energy 8(6):401–417. issn: 03603199. https://doi.org/10.1016/0360-3199(83)90162-3

  23. Lehner M et al (2014) Power-to-gas: technology and business models. SpringerBriefs in Energy. Springer International Publishing, Cham. isbn: 978-3-319-03994-7 978-3-319-03995-4. https://doi.org/10.1007/978-3-319-03995-4

  24. Russell JH, Nuttall LJ, Fickett AP (1973) Hydrogen generation by solid polymer electrolyte water electrolysis. Am Chem Soc Div Fuel Chem Prepr 18:24–40

    Google Scholar 

  25. Nail JM et al (2003) The evolution of the PEM stationary fuel cell in the U.S. innovation system, p 68

    Google Scholar 

  26. Slade S et al (2002) Ionic Conductivity of an extruded Nafion 1100 EW series of membranes. J Electrochem Soc 149(12):A1556. issn: 00134651. https://doi.org/10.1149/1.1517281

  27. Stansberry JM, Brouwer J (2020) Experimental dynamic dispatch of a 60 kW proton exchange membrane electrolyzer in power-to-gas application. Int J Hydrog Energy 45(16):9305–9316. (Mar 2020). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2020.01.228

  28. Hancke R, Holm T, Ulleberg O (2022) The case for high-pressure PEM water electrolysis. Energy Convers Manag 261:115642. (June 2022). issn: 01968904. https://doi.org/10.1016/j.enconman.2022.115642

  29. Bernt M et al (2020) Current challenges in catalyst development for PEM water electrolyzers. Chemie Ingenieur Technik 92(1–2):31–39. issn: 1522-2640. https://doi.org/10.1002/cite.201900101

  30. Minke C et al (2021) Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?. Int J Hydrog Energy 46(46):23581–23590. (July 2021). issn: 0360-3199. https://doi.org/10.1016/j.ijhydene.2021.04.174

  31. Feng Q et al (2017) A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J Power Sources 366:33–55. (Oct. 2017). issn: 03787753. https://doi.org/10.1016/j.jpowsour.2017.09.006

  32. Falcão DS (2020) A review on PEM electrolyzer modelling: guidelines for beginners. J Clean Prod 10

    Google Scholar 

  33. Hernández-Goómez Á, Ramirez V, Guilbert D (2020) Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption. Int J Hydrog Energy 45(29):14625–14639. (May 2020). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2020.03.195

  34. Doenitz W, Schmidberger R, Steinheil E (1980) Hydrogen Production by High Temperature Electrolysis of Water Vapour, p 9

    Google Scholar 

  35. Donitz W (1985) High-temperature electrolysis of water vapor? Status of development and perspectives for application. Int J Hydrog Energy 10(5):291–295. issn: 03603199. https://doi.org/10.1016/0360-3199(85)90181-8

  36. Salzano F (1985) Water vapor electrolysis at high temperature: systems considerations and benefits. Int J Hydrog Energy 10(12):801–809. issn: 03603199. https://doi.org/10.1016/0360-3199(85)90168-5

  37. Hong HS et al (2005) Microstructure and electrical conductivity of Ni/YSZ and NiO/YSZ composites for high-temperature electrolysis prepared by mechanical alloying. J Power Sources 149:84–89. (Sept 2005). issn: 03787753. https://doi.org/10.1016/j.jpowsour.2005.01.057

  38. Liang M et al (2009) Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism. J Power Sources 190(2):341–345. (May 2009). issn: 03787753. https://doi.org/10.1016/j.jpowsour.2008.12.132

  39. Yanagida H, Koumoto K, Miyayama M (1996) Chemistry of ceramics. Wiley-Blackwell, Chichester; New York. (Sept 1996). isbn: 978-0-471-96733-0

    Google Scholar 

  40. Takeuchi T et al (2002) Improvement of mechanical strength of 8 mol % Yttria-stabilized zirconia ceramics by spark-plasma sintering. J Electrochem Soc 149(4):A455. ISSN 00134651. https://doi.org/10.1149/1.1456915

  41. Schefold J, Brisse A, Tietz F (2011) Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode. J Electrochem Soc 159(2):A137–A144. issn: 0013-4651, 1945-7111. https://doi.org/10.1149/2.076202jes

  42. Virkar AV (2010) Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int J Hydrog Energy 35(18), pp 9527–9543. (Sept 2010). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2010.06.058

  43. Alenazey F et al (2015) Production of synthesis gas (H2 and CO) by high-temperature co-electrolysis of H2O and CO2. Int J Hydrog Energy 40(2): 10274–10280. (Aug 2015). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2015.06.034

  44. Li W et al (2013) Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid oxide electrolysis cells. Int J Hydrog Energy 38(25):11104–11109. (Aug 2013). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2013.01.008

  45. Ebbesen SD et al (2014) High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev 114(21):10697–10734. (Nov 2014). issn: 0009-2665, 1520-6890. https://doi.org/10.1021/cr5000865

  46. Zhu M, Ge Q, Zhu X (2020) Catalytic reduction of CO2 to CO via reverse water gas shift reaction: recent advances in the design of active and selective supported metal catalysts. Trans Tianjin Univ 26(3):172–187. (June 2020). issn: 1995-8196. https://doi.org/10.1007/s12209-020-00246-8

  47. Lim A et al (2019) A Study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis. J Ind Eng Chem 76:410–418. (Aug 2019). issn: 1226086X. https://doi.org/10.1016/j.jiec.2019.04.007

  48. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sustain Energy Rev 81:1690–1704. (Jan 2018). issn: 13640321. https://doi.org/10.1016/j.rser.2017.05.258

  49. Du N et al (2022) Anion-exchange membrane water electrolyzers. Chem Rev 122(13):11830–11895. (July 2022). issn: 0009-2665, 1520-6890. https://doi.org/10.1021/acs.chemrev.1c00854

  50. Miller HA et al (2020) Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain Energy Fuels 4(5):2114–2133. issn: 2398-4902. https://doi.org/10.1039/C9SE01240K

  51. Wang T et al (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3(32):16435–16439. issn: 2050-7488, 2050-7496. https://doi.org/10.1039/C5TA04001A

  52. Dionigi F, Strasser P (2016) NiFe-based (Oxy) hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv Energy Mater 6(23):1600621. (Dec 2016). issn: 16146832. https://doi.org/10.1002/aenm.201600621

  53. Ito H et al (2018) Investigations on electrode configurations for anion exchange membrane electrolysis. J Appl Electrochem 48(3):305–316. (Mar 2018). issn: 0021-891X, 1572-8838. https://doi.org/10.1007/s10800-018-1159-5

  54. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2):187–200. (Apr 2005). issn: 16156846. https://doi.org/10.1002/fuce.200400045

  55. Singh MR, Xiang C, Lewis NS (2017) Evaluation of flow schemes for near-neutral pH electrolytes in solar-fuel generators. Sustain Energy Fuels 1(3):458–466. issn: 2398-4902. https://doi.org/10.1039/C7SE00062F

  56. Lund H et al (2017) Smart energy and smart energy systems. Energy 137:556–565. (Oct 2017). issn: 03605442. https://doi.org/10.1016/j.energy.2017.05.123

  57. Ibáñez-Rioja A et al (2022) Simulation methodology for an off-grid solar-battery-water electrolyzer plant: simultaneous optimization of component capacities and system control. Appl Energy 307:118157. (Feb 2022). issn: 03062619. https://doi.org/10.1016/j.apenergy.2021.118157

  58. Jiang SP, Li Q (2022) Introduction to fuel cells: electrochemistry and materials. Springer Singapore, Singapore. isbn: 978-981-10- 7625-1 978-981-10-7626-8. https://doi.org/10.1007/978-981-10-7626-8

  59. Andersson J, Grönkvist S (2019) Large-scale storage of hydrogen. Int J Hydrog Energy 44(23):11901–11919. (May 2019). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2019.03.063

  60. Sakas G et al (2022) Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process. Int J Hydrog Energy 47(7):4328–4345. (Jan 2022). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2021.11.126

  61. Yodwong B et al (2020) AC-DC converters for electrolyzer applications: state of the art and future challenges. Electronics 9(6):912. (June 2020). issn: 2079-9292. https://doi.org/10.3390/electronics9060912

  62. Diéguez PM et al (2008) Thermal performance of a commercial alkaline water electrolyzer: experimental study and mathematical modeling. Int J Hydrog Energy 33(24):7338–7354. (Dec 2008). issn: 0360-3199. https://doi.org/10.1016/j.ijhydene.2008.09.051

  63. Abe I (2009) Alkaline water electrolysis. In: Energy carriers and conversion systems, vol I. EOLSS Publishers, pp 146–166. isbn: ISBN-978-1- 905839-29-2

    Google Scholar 

  64. Prokopius PR (1976) Model for calculating electrolytic shunt path losses in large electrochemical energy conversion systems. In: NASA TM X-3359, p 14

    Google Scholar 

  65. Ulleberg O (2003) Modeling of advanced alkaline electrolyzers: a system simulation approach. Int J Hydrog Energy 28(1):21–33. (Jan 2003). issn: 03603199. https://doi.org/10.1016/S0360-3199(02)00033-2

  66. Ursúa A, Sanchis P (2012) Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser. Int J Hydrog Energy 37(24):18598–18614. (Dec 2012). issn: 03603199. https://doi.org/10.1016/j.ijhydene.2012.09.125

  67. LeRoy RL, Bowen CT, LeRoy DJ (1980) The thermodynamics of aqueous water electrolysis. J Electrochem Soc 127(9):1954–1962. (Sept 1980). issn: 0013-4651, 1945-7111. https://doi.org/10.1149/1.2130044

  68. Balej J (1985) Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions overwide concentration and temperature ranges. Int J Hydrog Energy 10(4):233–243. issn: 03603199. https://doi.org/10.1016/0360-3199(85)90093-X

  69. Incropera FP, DeWitt DP (eds) (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken, NJ. isbn: 978-0-471-45728-2

    Google Scholar 

  70. Daniel AB (2018) Gas evolution and gas-liquid separator modeling. PhD thesis. Oklahoma State University

    Google Scholar 

  71. Haug P, Koj M, Turek T (2017) Influence of process conditions on gas purity in alkaline water electrolysis. Int J Hydrog Energy 42(15):9406–9418. (Apr 2017). issn: 0360-3199. https://doi.org/10.1016/j.ijhydene.2016.12.111

  72. Vepsäl äinen A, Pitkänen J, Hyppänen T (2012)Fundamentals of heat transfer, p 223. issn: 1798-1336

    Google Scholar 

  73. Matsushima H, Iida T, Fukunaka Y (2012) Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field. J Solid State Electrochem 16(2):617–623. (Feb 2012). issn: 1432-8488, 1433-0768. https://doi.org/10.1007/s10008-011-1392-x

  74. McCabe WL, Smith JC, Peter H (2005) Unit operations of chemical engineering, Seventh. McGraw-Hill, New York. isbn: 0-07-124710-6

    Google Scholar 

  75. Fasihi M, Breyer C (2020) Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J Clean Prod 243:118466. (Jan. 2020). issn: 09596526. https://doi.org/10.1016/j.jclepro.2019.118466

  76. IEA (2019) The future of hydrogen. Technical report. IEA, Paris, June 2019, p 203

    Google Scholar 

  77. Mahesh M et al (2021) Lifetime estimation of grid connected LiFePO4 battery energy storage systems. Electric Eng. (Aug 2021). issn: 1432-0487. https://doi.org/10.1007/s00202-021-01371-w

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ibáñez-Rioja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibáñez-Rioja, A., Sakas, G., Järvinen, L., Puranen, P. (2024). Off-Grid Green Hydrogen Production Systems. In: Sguarezi Filho, A.J., Jacomini, R.V., Capovilla, C.E., Casella, I.R.S. (eds) Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37909-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37909-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37908-6

  • Online ISBN: 978-3-031-37909-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics